AP Calculus Need To Know Quiz

Name: _____

Relationships of f, f', and f"

1) $f(x)$ is increasing when $f'(x)$ is	>0 or positive
2) $f(x)$ is decreasing when $f'(x)$ is	<0 or negative
3) $f(x)$ has a local minimum when $f'(x)$ is	changing from negative to positive
4) $f(x)$ has a local maximum when $f'(x)$ is	changing from positive to negative
5) $f(x)$ has a point of inflection when $f'(x)$ is	changing from inc. to dec. or vice versa
6) f(x) is concave up when f '(x) is	increasing
7) $f(x)$ is concave down when $f'(x)$ is	decreasing
8) $f(x)$ is concave up when $f''(x)$ is	>0 or positive
9) $f(x)$ is concave down when $f''(x)$ is	<0 or negative
10)f(x) has a point of inflection when f "(x) is	changing from pos. to neg. or vice versa

Derivatives: a and n are constants, u, v, and w are functions of x

$1) \ \frac{d}{dx}(a) = 0$	2) $\frac{d}{dx}(f(u)) = f'(u)\frac{du}{dx}$
$3) \ \frac{d}{dx}(x) = 1$	4) $\frac{d}{dx}(\ln(u)) = \frac{1}{u}\frac{du}{dx}$
$5) \ \frac{d}{dx}(au) = a\frac{du}{dx}$	6) $\frac{d}{dx}(e^u) = e^u \frac{du}{dx}$
7) $\frac{d}{dx}(u+v-w) = \frac{du}{dx} + \frac{dv}{dx} - \frac{dw}{dx}$	8) $\frac{d}{dx}(a^u) = a^u \ln a \frac{du}{dx}$
9) $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	$10)\frac{d}{dx}(\sin u) = \cos(u)\frac{du}{dx}$
$11)\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$12)\frac{d}{dx}(\cos u) = -\sin(u)\frac{du}{dx}$
$13)\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$	$14)\frac{d}{dx}(\tan u) = \sec^2 u \frac{du}{dx}$
$15)\frac{d}{dx}\left(\sqrt{u}\right) = \frac{1}{2\sqrt{u}}\frac{du}{dx}$	$16)\frac{\overline{d}}{dx}(\sec u) = \sec u \tan u \frac{du}{dx}$
$17)\frac{d}{dx}\left(\frac{1}{u}\right) = -\frac{1}{u^2}\frac{du}{dx}$	$18)\frac{d}{dx}(\csc u) = -\csc u \cot u \frac{du}{dx}$
$19)\frac{d}{dx}\left(\frac{1}{u^n}\right) = -\frac{n}{u^{n+1}}\frac{du}{dx}$	$20)\frac{d}{dx}(\cot u) = -\csc^2 u \frac{du}{dx}$

PVA - Particle Motion:

When is a particle moving forward/right/up? v(t) > 0

When is a particle moving backward/left/down? v(t) < 0

When is a particle stopped? v(t) = 0

When is a particle speeding up? **v(t) and a(t) have the same signs**

When is a particle slowing down? v(t) and a(t) have opposite signs

What is speed? |v(t)|

What is the relationship between position and velocity? **Velocity is the derivative of position** X'(t) = v(t) or s'(t) = v(t)

What is the relationship between position and acceleration? Acceleration is the 2nd derivative of position.

What is the relationship between velocity and acceleration? Acceleration is the derivative of velocity.

Limits:

As x approaches a constant

= # Done

=#/0 Test LHL and RHL answer will either be infinity, negative infinite or DNE

=0/0 Factoring, Multiply by the Conjugate, or L'Hopitals

As x approaches infinity:

Top heavy: Plug in x to see if answer is infinity or negative infinity

Bottom heavy: 0

Equal power: Ratio of coefficients of dominant terms

Definition of Continuity:

1. Limit as x approaches c exists

2. f(c) exists

3. Limit as x approaches c equals f(c)

What is IVT? What conditions must be true? What does it guarantee?

Guarantees an output/y-value. Condition is that the function is continuous.

What is Rolle's Theorem? What conditions must be true? What does is guarantee?

Guarantees a slope of zero. Conditions function is continuous and differentiable on the interval.

What is MVT? What conditions must be true? What does it guarantee? **Guarantees the slope of (f(b) – f(a))/ (b – a) = f'(c)** Conditions are the same as Rolles Derivative power rule: Bring down the exponent, decrease the exponent by 1.

Integral power rule: Increase the exponent by 1, divide by the new exponent.

Important Integrals:

J	$\int e^x dx = e^x + C$
ſ	$\int \frac{1}{x} dx = \ln x + C$
$\int \tan z$	$xdx = -\ln \cos x + C$

First fundamental theorem of calculus:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Derivatives

I	I			
1	÷			
I	l			
I	I			
I	I			

Integrals	
sin(x)	^
cos(x)	
-sin(x)	
-cos(x)	

Theta	0	Pi/6	Pi/4	Pi/3	Pi/2	Pi	3Pi/2	2Pi
Sin(Theta)	0	1	$\sqrt{2}$	$\sqrt{3}$	1	0	-1	0
		2	2	2				
Cos(Theta)	1	$\sqrt{3}$	$\sqrt{2}$	1	0	-1	0	1
		2	2	2				
Tan(Theta)	0	$\sqrt{3}$	1	$\sqrt{3}$	Undefined	0	Undefined	0
		3						

Riemann Sums:

LRAM overapproximates a decreasing function and underapproximates an increasing function

RRAM overapproximates an increasing function and underapproximates a decreasing function

Trapezoidal = (LRAM + RRAM)/2

$$\int_a^b f(x)dx = -\int_b^a f(x)dx \qquad \int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$$

Revolution of solids:

Area when in the form y =	$\int_{a}^{b} f(x) - g(x) dx$	Top curve - bottom
Area when in the form x =	$\int_{c}^{d} f(y) - g(y) dy$	Right curve - left

Disc Formula: $V = \pi \int_{a}^{b} (R(x))^{2} dx$

Washer Formula:
$$V = \pi \int_{a}^{b} (R(x))^{2} - (r(x))^{2} dx$$

Derivative for the following functions:

$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}\sin^{-1}u = \frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx}$
$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$	$\frac{d}{dx}\cos^{-1}u = \frac{-1}{\sqrt{1-u^2}} \cdot \frac{du}{dx}$
$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$	$\frac{d}{dx}\tan^{-1}u = \frac{1}{1+u^2} \cdot \frac{du}{dx}$
$\int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1}\frac{u}{a} + C$	$\int \frac{1}{a^2 + u^2} du = \tan^{-1} \frac{u}{a} + C$

Average value function formula:

$$f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Total distance traveled formula:

Total distance traveled =
$$\int_{a}^{b} |v(t)| dt$$

Displacement formula:

$$Displacement = \int_{a}^{b} v(t)dt$$

Current position at t = c, given the s(0) = 5:

$$s(c) = 5 + \int_0^c v(t)dt$$

Second fundamental theorem of calculus:

$$\frac{d}{dx}\int_{c}^{x} f(t)dt = f(x) \qquad \frac{d}{dx}\int_{c}^{u} f(t)dt = f(u) \cdot \frac{du}{dx}$$

Find the particular solution to the differential equation with the initial condition f(a) = b.

- 1) Separate
- 2) Integrate
- 3) Don't forget +C
- 4) Plug in initial condition
- 5) Solve for C
- 6) Rewrite equation
- 7) Solve for y

Tangent Line or Line Tangent to the Curve

$$y - y_1 = m(x - x_1)$$