

Find the following without the use of a calculator.

$$\tan\left(\frac{\pi}{4}\right) =$$

$$\csc\left(-\frac{\pi}{2}\right) =$$

$$\sec\left(\frac{5\pi}{4}\right) =$$

$$\sin\left(-\frac{4\pi}{3}\right) =$$

$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) =$$

$$\tan^{-1}\left(-\sqrt{3}\right) =$$

Given the interval $0 \le \theta \le 2\pi$

When is $sin(\theta) < 0$?

When is $cos(\theta) > 0$?

When is $tan(\theta) < 0$?

Solve the following using factoring:

1)
$$3x^2 - 27 = 0$$

2)
$$30x^2 - 10x + 70 = -135x$$
 3) $2x^2 + 4x = 2x + 12$

3)
$$2x^2 + 4x = 2x + 12$$

Given the following information for a linear equation write an equation in point slope form.

Solve the following equations for the indicated variable:

$$6)\,\frac{18}{6x} = \frac{x^{\frac{3}{2}}}{9}$$

7)
$$3 = 5e^{2x} - 9$$

8)
$$-9 = -4(2)^{x+3}$$

9)
$$\sqrt{2x+3}-4 = x-6$$

10)
$$2\cos\theta + 1 = 2$$

11)
$$2|x+2|-5<13$$

Find the following difference quotients.

As a reminder, the difference quotient is $\frac{f(x+h)-f(x)}{h}$

12)
$$f(x) = 3x + 2$$

13)
$$f(x) = 2x^2 + 3x$$

Given the following rational functions: Identify the vertical asymptotes, horizontal asymptotes, holes, x and yintercept(s).

14)
$$f(x) = \frac{3x^3 - 13x^2 - 10x}{30x^2 + 125x + 70}$$

Given the following table find the following, show all steps:

x	f(x)	g(x)	h(x)
1	5	7	-12
2	12	6	-8
3	9	2	3
4	3	5	4

15)
$$3g(f(4)) =$$

16)
$$(g(3))^2 - 7h(2) =$$

17)
$$3f(1) - g^{-1}(5) =$$

16)
$$(g(3))^2 - 7h(2) =$$
 17) $3f(1) - g^{-1}(5) =$ 18) $g(f(h(4))) =$