AP Chemistry Summer Homework

(link if you want to type your work)

Welcome to the awesome and challenging world of a college level chemistry course. I am excited to meet you in August and get us started with our first FIRE and BRIMSTONE lab. This summer homework is a way to review chemistry concepts students should have seen in their first chemistry course. This summer homework is due by Friday of the first week of school and will be your first AP chemistry process grade- graded on completion. You will be able to use this homework on your first Chemistry Foundation Quiz.

This will be a graded assignment with a significant amount of process points; it is MANDATORY.

This assignment is due the Friday of the first week back.

On <u>Friday August 23rd, Chemistry Foundation Quiz</u> based on this homework will be given. It is an open note quiz which means this summer start your AP chemistry notes with key information and examples.

Vocabulary Review from 1st Year Chemistry

Vocabulary Word	Definition	Drawing, Picture, Example
atom		
nucleus		
electrons		
protons		
neutrons		
ion		
polyatomic ion		
cation		
anion		
isotope		
electron configuration		
valence electrons		
lewis dot structure		
periodic trends		
atomic radius		
electronegativity		

ionization energy	
ionic bond	
covalent bond	
compound	
molecule	
diatomic molecule	
mixture	
significant figures	
balanced equation	
combustion reaction	
double replacement reaction	
precipitation reaction	
aqueous	
solubility	
molar mass	
mole	
avogadro's number	
molarity	
limiting reagent	
ideal gas law	
gas constant	
temperature	
Kelvin	

Significant Figures

On the FRQ portion of the AP exam, sig figs will be graded for some of the mathematical answers. Since we don't know which answers will be graded for sig figs, it is important to have the correct number of sig figs for EVERY answer.

Significant Figures Rules:

- All non-zero digits DO count.
 - 24 = 2
 - -3.56 = 3
- · Leading zeros DON'T count.
 - (zeros in front of numbers)
 - -0.0025 = 2
- · Captive Zeros DO count.
 - (zeros between non-zero numbers)
 - 1502 = 4 1.008 = 4
- Trailing Zeros DO count IF the number contains a DECIMAL.
 - (zeros at the end of numbers)
 - -100 = 1
- 2306.0 = 5

 $1.00 \times 10^3 = 3$

Significant Figures in Calculations

MULTIPLICATION

 $\frac{123.1}{4 \text{ s.f.}} \times \frac{23}{2 \text{ s.f.}} = \frac{2800}{2 \text{ s.f.}}$

ADDITION

123.<u>1</u> + 23 = 146 1 d.p. 0 d.p. 0 d.p. **SUBTRACTION** 123.1 - 23 = 100.

1 d.p. 0 d.p. 0 d.p.

note: s.f. stands for "significant figures" d.p. stands for "digits to the right of the decimal point"

Practice identifying the number of sig figs in each number and perform the calculations:

<u> </u>	<u> </u>
200 → sig figs	560.0 → sig figs
6,897 → sig figs	0.4096 → sig figs
$9,273,507,235 \rightarrow \underline{\hspace{1cm}} $ sig figs	56 → sig figs
$409.00 \rightarrow \underline{\hspace{1cm}} sig figs$	$0.000004 \rightarrow \underline{}$ sig figs
$0.0295 \rightarrow \underline{\hspace{1cm}} sig figs$	87,098 →sig figs

$$10,950 + 12,000.1 =$$

1000 / 2.51 =

400.1 / 10.0 =

100.0 + 109 = _____

200. + 310 = ____

Writing Formulas and Ionic vs Covalent (Molecular Compounds)

Name	Formula	Ionic OR Covalent??	In summary, 1) Using the periodic table how do you
Magnesium nitrate			know if a compound is ionic or
Phosphorus mononitride			covalent?
Magnesium chloride			
Dinitrogen trisulfide			
Nitrogen trichloride			2) Using the name how do you know if a compound is ionic or covalent?
Barium nitride			
Carbon disulfide			
Sodium sulfate			

Balancing Equations

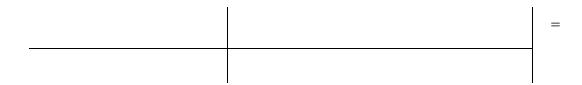
<u>Directions</u>: write coefficients (the numbers in front of the compounds and elements) to balance all atoms in the reaction.

 $_$ FeBr₃ + $_$ H₂SO₄ \rightarrow $_$ Fe₂(SO₄)₃ + $_$ HBr

 $_$ Fe + $_$ O₂ \rightarrow $_$ Fe₂O₃

 $\underline{\qquad}$ Fe + $\underline{\qquad}$ Cl₂ \rightarrow FeCl₃

 $C_2H_4 + O_2 \rightarrow CO_2 + H_2O$


 $__C_4H_{10}O + __O_2 \rightarrow __CO_2 + __H_2O$

 $__C_5H_8O_2 + __NaH + __HCl \rightarrow __C_5H_{12}O_2 + __NaCl$

 $_$ HSiCl₃ + $_$ H₂O \rightarrow $_$ H₁₀Si₁₀O₁₅ + $_$ HCl

Stoichiometry

- 1) When solid iron is exposed to oxygen (O_2) gas in the air it forms rust, iron (III) oxide. Write the balanced equation for this reaction (using the smallest whole-number coefficients).
- 2) Aqueous solutions of copper (II) nitrate and sodium hydroxide are mixed. Determine the products for this double replacement reaction and write the balanced equation for this reaction (using the smallest whole-number coefficients).
- 3) During an electroplating process, 5.8625 moles of silver is deposited on a steel bar. How many grams of silver is this?

4) A helium filled balloon has a to Liters He = 1 mole of He)	otal volume of 136,	500 moles. How man	ny Liters of h	elium are in the	balloon? (22.4
				=	
5) In a shamical reaction 0.207 a	wayna af ahlawaathaa	oo (C.H.Cl) is mus due	and Whatia	tha malaa af thia	amount of
5) In a chemical reaction, 0.397 g C_2H_5Cl ?	rams of enforceman	$(C_2H_5C_1)$ is produc	ced. What is	the moles of this	amount of
				=	
6) In the reaction: Al ₂ S ₃ (s) + 6HO AlCl ₃ formed?			many moles	of HCl are used	for 14 moles of
				=	
7) In the reaction $Cu(s) + 2AgNO$ produce 49.1 g of silver?	$_3(aq) \longrightarrow 2Ag(s) +$	- $Cu(NO_3)_2(aq)$, what	t number of g	rams of copper a	are needed to
					=
1	I		I		

Step 1: Write the	e balanced equation			
Step 2: Determin	ne grams of ${\rm I_2}$.			
				=
reactant in this rea	cium hydroxide reacts with ction. e balanced equation	12 grams of hydrobromic ac	id (hydrogen bromide). De	etermine the limiting
Step 2: From 10	grams of Ca(OH) ₂ determ	nine how many grams of H	$ m H_2O$ is produced	
				=
Step 3: From 12	grams of HBr determine h	now many grams of H₂O is	s produced	
				=
Step 4: Identify	the limiting reactant.			

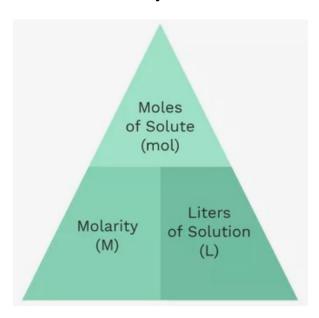
8) If chlorine (Cl₂) gas is bubbled through a potassium iodide solution, elemental iodine (I₂) and potassium chloride is

produced. Calculate the mass of I_2 produced when 11.0 grams of potassium iodide gas is used.

Ideal Gas Law Problem

From the ideal gas law equation PV = nRT calculate R and its units at standard temperature and pressure which means 1 atm, 22.4 L, 1 mole, and 0° C.

Heat Problem


Heat energy is represented by the variable q with the unit Joules in the equation

$$q = mc\Delta T$$
 $m = mass in grams$ $c = specific heat in J/g °C$ $\Delta T = T_{Final} - T_{initial}$ in celsius

A 6.75 g sample of gold (specific heat capacity = 0.130 J/g °C) is heated using 50.6 J of energy. If the original temperature of the gold is 10.0°C, what is its final temperature?

Molarity

Molarity and unit conversions from mL to Liters is EVERYWHERE on the AP Chemistry Exam. Here is a <u>link</u> to a molarity tutorial.

KING HENRY DIED DRINKING CHOCOLATE MILK

Mnemonic	King	Henry	Died	Base Unit	Drinking	Chocolate	Milk
Length: Abbreviation:	Kilometer km	Hectometer hm	Decameter dam	Meter m	Decimeter dm	Centimeter cm	Millimeter mm
Weight: Abbreviation:	Kilogram kg	Hectogram hg	Decagram dag	Gram	Decigram dg	Centigram cg	Milligram mg
Volume: Abbreviation:	Kiloliter kL	Hectoliter hL	Decaliter daL	Liter L	Deciliter dL	Centiliter cL	Milliliter mL
How many are in 1 meter/gram/liter	.001	.01	.1	1	10	100	1000
How many meters/grams/liters are in this unit?	1000	100	10	1	.1	.01	.001
	BIGGER				SMAL	LER	\Rightarrow

- 1. What is the molarity of a solution that contains 1.724 moles of H_2SO_4 in 2.50 L of solution?
- 2. What is the molarity of a solution prepared by dissolving 25.0 g of HCl (g) in enough water to make 150.0 mL of solution?